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Fig. 1. Based on our new observations on deep ViT features, we devise lightweight
zero-shot methods to solve fundamental vision tasks (e.g. part co-segmentation and
semantic correspondences). Our methods are applicable even in challenging settings
where the images belong to different classes (e.g. fox and leopard).

Abstract. We study the use of deep features extracted from a pre-
trained Vision Transformer (ViT) as dense visual descriptors. We ob-
serve and empirically demonstrate that such features, when extracted
from a self-supervised ViT model (DINO-ViT), exhibit several striking
properties, including: (i) the features encode powerful, well-localized se-
mantic information, at high spatial granularity, such as object parts; (ii)
the encoded semantic information is shared across related, yet different
object categories, and (iii) positional bias changes gradually throughout
the layers. These properties allow us to design simple methods for a
variety of applications, including co-segmentation, part co-segmentation
and semantic correspondences. To distill the power of ViT features from
convoluted design choices, we restrict ourselves to lightweight zero-shot
methodologies (e.g., binning and clustering) applied directly to the fea-
tures. Since our methods require no additional training nor data, they
are readily applicable across a variety of domains. We show by extensive
qualitative and quantitative evaluation that our simple methodologies
achieve competitive results with recent state-of-the-art supervised meth-
ods, and outperform previous unsupervised methods by a large margin.
Code is available in dino-vit-features.github.io.
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1 Introduction

“Deep Features” — features extracted from the activations of layers in a pre-
trained neural network — have been extensively used as visual descriptors in a
variety of visual tasks, yet have been mostly explored for CNN-based models.
For example, deep features extracted from CNN models that were pre-trained
for visual classification (e.g., VGG [49]) have been utilized in numerous visual
tasks including image generation and manipulation, correspondences, tracking
and as a general perceptual quality measurement.

Recently, Vision Transformers (ViT) [13] have emerged as a powerful alter-
native architecture to CNNs. ViT-based models achieve impressive results in
numerous visual tasks, while demonstrating better robustness to occlusions, ad-
versarial attacks and texture bias compared to CNN-based models [37]. This
raises the following questions: Do these properties reflect on the internal rep-
resentations learned by ViTs? Should we consider deep ViT features as an al-
ternative to deep CNN features? Aiming to answer these questions, we explore
the use of deep ViT features as general dense visual descriptors: we empirically
study their unique properties, and demonstrate their power through a number
of real-world visual tasks.

In particular, we focus on two pre-trained ViT models: a supervised ViT,
trained for image classification [13], and a self-supervised ViT (DINO-ViT),
trained using a self-distillation approach [3]. In contrast to existing methods,
which mostly focus on the features from the deepest layer [3,48,54], we dive
into the self-attention modules, and consider the various facets (tokens, queries,
keys, values) across different layers. We observe and empirically demonstrate
that DINO-ViT features: (i) encode powerful high-level information at high spa-
tial resolution, i.e., capture semantic object parts, (ii) this encoded semantic
information is shared across related, yet different object classes, and (iii) posi-
tional information gradually decreases throughout layers, thus the intermediate
layers encode position information as well as semantics. We demonstrate that
these properties are not only due to the ViT architecture but also significantly
influenced by the training supervision.

Relying on these observations, we unlock the effectiveness of DINO-ViT
features by considering their use in a number of fundamental vision tasks:
co-segmentation, part co-segmentation, and semantic point correspondences.
Moreover, equipped with our new observations, we tackle the task of part co-
segmentation in a challenging unconstrained setting where neither the number
of input images, nor their domains are restricted. We further present how our
part co-segmentation can be applied to videos. To the best of our knowledge, we
are the first to show results of part co-segmentation in such challenging cases
(Fig. 6). We apply simple, zero-shot methodologies to deep ViT features for all
these tasks, which do not require further training. Deliberately avoiding large-
scale learning-based models showcases the effectiveness of the learned DINO-ViT
representations. We demonstrate that without bells and whistles, DINO-ViT fea-
tures are already powerful enough to achieve competitive results compared to
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state-of-the-art models specifically designed and trained for each individual task.
We thoroughly evaluate our performance qualitatively and quantitatively.

To conclude, our key contributions are: (i) We uncover surprising localized
semantic information, far beyond saliency, readily available in ViT features.
(ii) Our new observations give rise to lightweighted zero-shot methodologies
for tackling co- and part co-segmentation as well as semantic correspondences.
(iii) We are the first to show part co-segmentation in extreme settings, showing
how objects can be consistently segmented into parts across different categories,
and across a variety of image domains, for some of which training data is scarce.

2 Related Work

CNN-based Deep Features. Features of pre-trained CNNs are a cornerstone for
various vision tasks from object detection and segmentation [19,5], to image
generation [46,17]. These representations were shown to align well with human
perception [17,26,58,35] and to encode a wide range of visual information -
from low level features (e.g. edges and color) to high level semantic features (e.g.
object parts) [40, 4]. Nevertheless, they exhibit a strong bias towards texture [18],
and lack positional information due to their shift equivariance [57]. Moreover,
their restricted receptive field [34] makes them capture mostly local information
and ignore long-range dependencies [53]. Here, we study the deep features of a
less restrictive architecture - the Vision Transformer, as an alternative.

Vision Transformer (ViT). Vision Transformers [13] have recently been used
as powerful CNN alternatives. ViT-based models achieve impressive results in a
variety of visual tasks [13,7, 2], while demonstrating better robustness to occlu-
sions, adversarial attacks, and texture bias compared to CNN-based models [37].

In particular, Caron et al. [3] presented DINO-ViT — a ViT model trained
without labels, using a self-distillation approach. They observed that the atten-
tion heads of this model attend to salient foreground regions in an image. They
further showed the effectiveness of DINO-ViT features for several tasks that
benefit from this property, including image retrieval and object segmentation.

Recent works follow this observation and utilize these features for object
discovery [48,54], semantic segmentation [20] and category discovery [52]. All
these works treat pre-trained DINO-ViT as a black-box, only considering features
extracted from it’s last layer, and their use as global or figure/ground-aware
representations. In contrast, we examine the continuum of Deep ViT features
across layers, and dive into the different representations inside each layer (e.g. the
keys, values, queries of the attention layers). We observe new properties of these
features besides being aware to foreground objects, and put these observations
to use by solving fundamental vision tasks.

Concurrently, [42, 11, 37] study theoretical aspects of the underlying machin-
ery, aiming to analyze how ViTs process visual data compared to CNN models.
Our work aims to bridge the gap between better understanding Deep ViT rep-
resentations and their use in real-world vision tasks in a zero-shot manner.
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Co-segmentation. Co-segmentation aims to jointly segment objects common to
all images in a given set. Several unsupervised methods used hand-crafted de-
scriptors [15,44,45] for this task. Later, CNN-based methods applied supervised
training [31] or fine-tuning [56, 29, 30] on intra-class co-segmentation datasets.
The supervised methods obtain superior performance, yet their notion of “com-
monality” is restricted by their training data. Thus, they struggle generalizing
to new inter-class scenarios. We, however, show a lightweight unsupervised ap-
proach that is competitive to supervised methods for intra-class co-segmentation
and outperforms them in the inter-class setting.

Part Co-segmentation. Given a set of images with similar objects, the task is
to discover common object parts among the images. Recent methods [24, 32,
9] train a CNN encoder-decoder in a self-supervised manner to solve this task,
while [10] applies matrix factorization on pre-trained deep CNN features. In
contrast, we utilize a pre-trained self-supervised ViT to solve this task, and
achieve competitive performance to the methods above. Due to the zero-shot
nature of our approach, we are able to apply part co-segmentation across classes,
and on domains that lack training supervision (see Fig. 6). To the best of our
knowledge, we are the first to address such challenging scenarios.

Semantic Correspondences. Given a pair of images, the task is to find seman-
tically corresponding points between them. Aberman et al. [1] propose a sparse
correspondence method for inter-class scenarios leveraging pre-trained CNN fea-
tures. Recent supervised methods employ transformers for dense correspondence
in images from the same scene [50, 25]. Cho et al. [7] use transformers for semantic
point correspondences by training directly on annotated point correspondences.
We show that utilizing ViT features in a zero-shot manner can be competitive
to supervised methods while being more robust to different pose and scale than
previous unsupervised methods.

3 VIiT Features as Local Patch Descriptors

We explore ViT features as local patch descriptors. In a ViT architecture, an
image is split into n non-overlapping patches {p;},, , which are processed into
spatial tokens by linearly projecting each patch to a d-dimensional space, and
adding learned positional embeddings. An additional [CLS]token is inserted to
capture global image properties. The set of tokens are then passed through L
transformer encoder layers, each consists of normalization layers (LN), Multihead
Self-Attention (MSA) modules, and MLP blocks (with skip connections):

TH = MSALN(T'" ")) +T"', T' = MLP(LN(T")) 4+ T" (1)

where T =[t},, ..., ] are the output tokens for layer [.
In each MSA block, tokens are linearly projected into queries, keys and values:

i

qf, = th : té_17 k"7l, = W’é : té_17 ’U7ll = Wzl) . tl_l (2)
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Fig. 2. ViT Architecture (Left). An image is split into n non-overlapping patches and
gets a [CLS]token. These patches are embedded, added positional embeddings and
passed through transformer layers. Each patch is directly associated with a set of fea-
tures in each layer: a key, query, value and token; each can be used as patch descriptors.
Deep features visualization via PCA (Right): Applied on supervised and self-supervised
(a) ViTs and (b) CNN-ResNet models. We fed 18 images from AFHQ [8] to each model,
extract features from a given layer, and perform PCA on them. For each model, we vi-
sualize PCA components at each layer, for an example image (Dalmatian dog in Fig. 7
left): the first component is shown on the top, while second-to-fourth components are
shown as RGB images below. ResNet PCA is upsampled for visualization purposes.

=
Self-Supervised (DINO)

(b) ResNet

which are then fused using multihead self-attention. Figure 2 Left illustrates
this process, for full details see [13]. Besides the initial image patches sampling,
ViTs have no additional spatial sampling; hence, each image patch p; is directly
associated with a set of features: {¢}, k!, vl,#'}, including its query, key, value

and token, at each layer [, respectively. We next focus our analysis on using the
keys as ‘ViT features’. We justify this choice via ablation in Sections 5.2 & 5.3.

3.1 Properties of ViT’s Features

We focus on two pre-trained ViT models, both have the same architecture and
training data, but differ in their training supervision: a supervised ViT, trained
for image classification using ImageNet labels [13], and a self-supervised ViT
(DINO-VIT), trained using a self-distillation approach [3]. We next provide qual-
itative analysis of the internal representations learned by both models, and em-
pirically originate their properties to the combination of architecture and train-
ing supervision. In Sec. 5, we show these properties enable several applications,
through which we quantitatively validate our observations.

Figure 2 Right (a) shows a simple visualization of the learned representation
by supervised ViT and DINO-ViT: for each model, we extract deep features
(keys) from a set of layers, perform PCA, and visualize the resulting leading
components. Figure 2 Right (b) shows the same visualization for two respec-
tive CNN-ResNet [21] models trained using the same two supervisions as the
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(a) Sample images and ground truth parts
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Fig. 3. t-SNE visualization. We take 10 images from 5 animal categories from PASCAL-
Parts [6]. (a) shows representative images and ground-truth part segments. For each
image we extract ViT features from DINO-ViT and a supervised ViT. For each model,
all features are jointly projected to 2D using t-SNE [41]. Each 2D point is colored
according to its ground-truth part, while its shape represents the class. In (b) DINO-
ViT features are organized mainly by parts, across different object categories, while in
(c) supervised ViT features are grouped mostly by class, regardless of object parts.

ViT models: image classification, and DINO [3]. This simple visualization shows
fundamental differences between the internal representations of each model.

Semantics vs. spatial granularity. One noticeable difference between CNN-ResNet
and ViT is that CNNs trade spatial resolution with semantic information in the
deeper layers, as shown in Fig. 2 Right (b): the feature maps in the deepest
layer have very low resolution (x32 smaller than the input image), and thus
provide poorly localized semantic information. In contrast, ViT maintains the
same spatial resolution through all layers. Also, the receptive field of ViT is the
entire image in all layers — each token té attends to all other tokens té». Thus, ViT
features provide fine-grained semantic information and higher spatial resolution.

Representations across layers. It is well known that the space of deep CNN-
based features has a hierarchy of representation: early layers capture low-level
elements such as edges or local textures (shallow layers in Fig. 2 Right (b)), while
deeper layers gradually capture more high level concepts [40,4, 46]. In contrast,
we notice a different type of representation hierarchy in ViTs: Shallow features
mostly contain positional information, while in deeper layers, this is reduced in
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Fig. 4. Facets of ViT: We compute the similarity between a feature associated with
the magenta point in the source image (a) to all features in the target image (b). We
do this for intermediate features (top row) and features from the last layer (bottom
row). (c-f) are the resulting similarity maps, when using different facets of DINO-ViT
as features: tokens, queries, values and keys. Red indicates higher similarity. For each
facet, the closest point in the target image is marked with a unique color, specified near
the facet name. The keys (f) have cleaner similarity map compared to other facets.

favor of more semantic features. For example, in Fig. 2 Right (a) the deep features
distinguish dog features from background features, while the shallow features are
gathered mostly based on their spatial location. Interestingly, intermediate ViT
features contain both positional and semantic information.

Semantic information across super-classes. Figure 2 Right (b) exhibits the su-
pervised ViT model (top) produces “noisier” features compared to DINO-ViT
(bottom). To further contrast the two ViTs, we employ t-SNE [41] to the keys of
the last layer [k}!'], extracted from 50 animal images from PASCAL-Parts [6].
Figure 3 presents the 2D-projected keys. Intriguingly, the keys from a DINO-
ViT show semantic similarity of body parts across different classes (grouped
by color), while the keys from a supervised ViT display similarity within each
class regardless of body part (grouped by shape). This demonstrates that while
supervised ViT spatial features emphasize global class information, DINO-ViT
features have local semantic information resembling semantic object parts.

Different facets of ViT representation. So far, we focused on using keys as ‘ViT
features’. However, ViT provides different facets that are also directly associated
with each image patch (Fig. 2 Left). We empirically observe slight differences in
the representations of ViT facets, as shown in Fig. 4. In particular, we found the
keys to provide a slightly better representation, e.g., they depict less sensitivity
to background clutter than the other facets. In addition, both keys and queries
posses more positional bias in intermediate layers than values and tokens.

4 Deep ViT Features Applied to Vision Tasks

We demonstrate the effectiveness of deep DINO-ViT features as local patch
descriptors several visual tasks. We deliberately apply only simple, lightweight
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Fig. 5. Co-segmentation & part co-segmentation pipeline. Input images (a) are fed sep-
arately to DINO-VIT to obtain (b) spatial dense descriptors and (c) saliency maps
(from the ViT’s self-attention maps). All the extracted descriptors are clustered to-
gether (d). Each cluster is assigned as foreground or background via a saliency maps
based voting process. Foreground segments form the co-segmentation results (e). The
process is repeated on foreground features (f) alone to yield the common parts (h).

methodologies on the extracted features, without any additional training nor
fine-tuning, to showcase the effectiveness of DINO-ViT representations. For full
implementation details, see supplementary material (SM).

Co-segmentation. Our co-segmentation approach, applied to a set of NV input
images, comprises of two steps, followed by GrabCut [43] to refine the binary
co-segmentation masks, as illustrated in Fig. 5(a-e):

1. Clustering: We treat the set of extracted descriptors across all images and
all spatial locations as a bag-of-descriptors, and cluster them using k-means.
At this stage, the descriptors are clustered into semantic common segments.
As illustrated in Fig. 2 Right, the most prominent features’ component dis-
tinguishes foreground and background, which ensures their separation. The
result of this stage is K clusters that induce segments in all images.

2. Voting: We use a simple voting procedure to select clusters that are salient
and common to most of the images. Let Attn? be the mean [CLS]attention
of selected heads in the last layer in image Z of patch . Let S,% be the set of
all patches in image Z belonging to cluster k. The saliency of segment S% is

1
Sal (S%) = 157 Z;I Attn? (3)
ey

Each segment votes for the saliency of the cluster k:
Votes (k) = IL[EI sa1(sZ)>7] (4)

For some threshold 7. A cluster k is considered “foreground” iff its Votes (k)
is above percentage p of all the images.

Part Co-segmentation. To further co-segment the foreground objects into com-
mon parts, we repeat the clustering step only on foreground descriptors, see
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Fig. 5(f-h). By doing so, descriptors of common semantic parts across images are
grouped together. We further refine the part masks using multi-label CRF [27].
In practice, we found k-means to perform well, but other clustering methods (e.g.
[39,16]) can be easily plugged in. For co-segmentation, the number of clusters is
automatically set using the elbow method [38], whereas for part co-segmentation,
it is set to the desired number of object parts. Our method can be applied to a
variety of object categories, and to arbitrary number of input images N, ranging
from two to thousands of images. On small sets we apply random crop and flip
augmentations for improved clustering stability (see SM for more details).

Point Correspondences. Semantic information is necessary yet insufficient for
this task. For example, matching points on an animal’s tail in Fig. 1, relying
only on semantic information is ambiguous: all points on the tail are equally
similar. We reduce this ambiguity in two manners:

1. Positional Bias: We want the descriptors to be position-aware. Features from
earlier layers are more sensitive to their position in the image (see Sec. 3.1);
hence we use mid-layer features which provide a good trade-off between
position and semantic information.

2. Binning: We incorporate context into each descriptor by integrating infor-
mation from adjacent spatial features. This is done by applying log-binning
to each spatial feature, as illustrated in Fig. 1.

To automatically detect reliable matches between images, we adopt the notion
of “Best Buddies Pairs“ (BBPs) [12], i.e., we only keep descriptor pairs which
are mutual nearest neighbors. Formally, let M = {m;} and @ = {¢;} be sets of
binned descriptors from images Ip; and I respectively. The set of BBPs is thus:

BB(M,Q) ={(m,q) | m e M, g € @, NN(m,Q) =g ANN(qg, M) =m}  (5)

Where NN(m, Q) is the nearest neighbor of m in @ under cosine similarity.

Resolution Increase. The spatial resolution of ViT features is inversely propor-
tional to size of the non-overlapping patches, p;. Our applications benefit from
higher spatial feature resolution. We thus modify ViT to extract, at test time,
overlapping patches, interpolating their positional encoding accordingly. Conse-
quently, we get, without any additional training, ViT features at finer spatial
resolution. Empirically, we found this method to work well in all our experiments.

5 Results

5.1 Part Co-segmentation

Challenging small sets. In Fig. 6, we present several image pairs collected from
the web. These examples pose challenge due to different appearance (e.g. cars,
phones), different classes (e.g. bicycle-unicycle, cat-tiger) and belonging to do-
mains that are difficult to accommodate training sets for (e.g. pikachu, olaf). Our
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Pikachu

Fig. 6. Part Co-segmentation of Image Pairs: Our method semantically co-segments
common object parts given as little as two input images. See the SM for more examples.

Fig. 7. Part Co-segmentation on AFHQ: We apply our method on the test set of
AFHQ [8] containing 1.5K images of different animal faces. More results are in SM.

zero-shot method manages to provide semantically consistent part segments for
each image pair. For example, in the bicycle-unicycle example the tires, spokes,
chassis and saddle parts are consistently found. To the best of our knowledge,
we are the first to handle such challenging cases.

Video part Co-segmentation. We extend our framework to work on videos by
applying it to frames of a single video. Since DINO-ViT features are consistent
across video frames, applying our observations to video co-segmentation yields
temporally consistent parts. To the best of our knowledge, we are the first to
apply part co-segmentation on videos. We include multiple examples in the SM.

Inter-class results. In Fig. 7 we apply our part co-segmentation with & = 10
parts on AFHQ [8] test set, containing 1.5K images of different animal faces.
Our method provides consistent parts across different animal classes, e.g. ears
marked in orange, forehead marked in blue, whiskers marked in purple, etc.

CUB [55] evaluation. Following [24,9], we evaluate performance on CUB [55]
test set, which contains 5K images of different bird species. Following [24], we
measure the key-point regression error between the predicted and ground truth
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Fig. 8. Part co-segmentation comparison on CUB: We show results on randomly chosen
images from CUB [55]. Our results are more semantically consistent across parts than
the supervised SCOPS [24] and are competitive to the supervised Choudhury et al. [9].

key-point regression |

Method CUB-01 CUB-02 CUB-03 FG-NMI 1 FG-ARI 1 NMI 1 ARI 1
supervised

SCOPS [24]" (model) 183  17.7  17.0 39.1 179 244 7.1
Huang and Li [23]' 151 171  15.7 - - 26.1 132
Choudhury et al.[9]I 11.3 15.0 10.6 46.0 21.0 43.5 19.6
unsupervised

ULD 51,59 301 294 282 - . - .
DFF [10] 22.4 21.6 22.0 32.4 14.3 25.9 124
SCOPS [24] (paper)  18.5 18.8 21.1 - - - -
Ours 17.1 14.7 19.6 39.4 19.2 38.9 16.1

Table 1. Part Co-segmentation results: We report mean error of landmark regression
on three CUB [55] test sets, and NMI and ARI [9] measures on the entire CUB test
set. All methods predict k = 4 parts.  method uses image-level supervision, { methods
use ground truth foreground masks as supervision.

landmarks in Tab. 1 on three test sets from CUB [55]. In addition, we follow [9]
treating the part segments as clusters, and report NMI and ARI. FG-NMI and
FG-ARI disregard the background part as a cluster. Our method surpasses unsu-
pervised methods by a large margin, and is competitive to [9] which is supervised
by foreground masks. Figure 8 shows our method produces more semantically
coherent parts, with similar quality to [9]. Further evaluation on the CelebA [33]
dataset is available in the SM.

5.2 Co-segmentation

We evaluate our performance on several intra-class co-segmentation datasets of
varying sizes - MSRCT [47], Internet300 [44] and PASCAL-VOC [14].Further-
more, to evaluate inter-class co-segmentation, we compose a new dataset from
PASCAL [14] images, named “PASCAL Co-segmentation” (PASCAL-CO). Our
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MSRC [Internet300] PASCAL [ PASCAL
Method Training Set [47] [44]  |-VOC [14]| -CO
supervised
SSNM [56] COCO-SEG|81.9(95.2|74.1| 93.6 |71.0|94.9|74.2(94.5
DOCS [31] VOC2012 [82.9|95.4(72.5| 93.5 [65.0(94.2|34.9|53.7
CycleSegNet [30] VOC2012 [87.2|97.9(80.4| - [75.4/95.8| - -
Li et al. [29] COCO - - |84.0/97.1 (63.0({94.1| - -
unsupervised
Hsu et al.[22] - - - 169.8| 92.3 [60.0({91.0| - -
DeepCO3 [28] - 54.7|87.2|53.4| 88.0 [46.3|88.5|37.3|74.1
TokenCut[54] - 81.2194.9(65.2| 91.3 |57.8|90.6 | 75.8|93.0
Faktor et al.[15] - 77.0192.0| - - 46.0(84.0(41.4(79.9
Rubinstein et al.[44] - 74.0192.2|57.3| 85.4 | - - - -
Ours - 86.7196.5|79.5| 94.6 |60.7|88.2|79.5|94.7

Table 2. Co-segmentation evaluation: We report mean Jaccard index 7., and precision
Pm over all sets in each dataset. We compare to unsupervised methods [15,44] and
methods supervised with ground truth segmentation masks [56, 31, 30, 29].

DINO Saliency Baselines|Sup. Saliency Baselines Ours

ViT ResNet ViT ResNet Keys|Tokens|Queries|Values
TIm|75.0 37.7 39.9 40.0 79.5| 69.2 | 72.7 | 49.2
Pm |93.1 78.1 69.7 78.9 94.7] 90.68 | 91.7 | 83.3

Table 3. Co-segmentation ablation: on PASCAL-Co for saliency baselines and our
method using different ViT facets. Our method surpasses all baselines, and our choice
of keys yields better performance than default chosen DINO-ViT tokens.

Fig. 9. PASCAL-CO for inter-class co-segmentation: Each set contains images from
related classes. Our method captures regions of all common objects from different
classes, contrary to supervised methods [31, 56]. Saliency Baseline [3] results are noisy.

dataset has forty sets of six images, each from semantically related classes (e.g.,
car-bus-train, bird-plane). Fig. 9 shows a sample set, the rest is in the SM.

Quantitative evaluation. We compare our unsupervised approach to state-of-
the-art supervised methods, trained on large datasets with ground truth seg-
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mentation masks, [56,31,29,30]; and unsupervised methods, [15,44, 54,22, 28].
We report Jaccard Index (J,,), which reflects both precision (covering the fore-
ground) and accuracy (no foreground “leakage”), and mean precision (P,,). The
results appear in Table 2. Our method surpasses the unsupervised methods by
a large margin, and is competitive to the supervised methods. In the inter-class
scenario (PASCAL-CO), our method surpasses all other methods.

Ablation. We conduct an ablation study to validate our observations in 3.1. As
mentioned in Sec. 2, Caron et al. [3] observed DINO-ViT attention heads attend
to salient regions in the image, and threshold them to perform object segmen-
tation. We name their method “DINO-ViT Saliency Baseline” as mentioned in
Table 3. We apply the same baseline with attention heads from a supervised ViT
(Sup. ViT Saliency Baseline). To compare ViT with CNN representations, we
also apply a similar method thresholding ResNet features (DINO / Sup. ResNet
Saliency Baseline), implementation details are in the SM. We also ablate our
method with different facets. The supervised ViT performs poorest, while both
ResNet baselines perform similarly. The DINO-ViT baseline exceeds them and is
closer to our performance. The remaining performance gap between our method
and the DINO-ViT baseline can be attributed to one bias in the DINO-ViT
baseline - it captures foreground salient objects regardless of their commonal-
ity to the other objects in the images. For example, the house behind the blue
car in Fig. 9 is captured by DINO-ViT Saliency Baseline but is not captured by
our method. This corroborates our observation that the properties of DINO-ViT
stem from both architecture and training method. The facet ablation demon-
strates our observation that keys are superior than other facets.

5.3 Point Correspondences

Qualitative Results. We test our method on numerous pairs, compared with the
VGG-based method, NBB [1]. Figure 10 shows our results are more robust to
changes of appearance, pose and scale on both intra- and inter-class pairs.

Quantitative Evaluation. We evaluate on 360 random Spair71k [36] pairs, and
measure performance by Percentage of Correct Keypoint (PCK) - a predicted
keypoint is considered correct if it lies within a « - max(h,w) radius from the
annotated keypoint, where (h,w) is the image size. We modify our method to
match this evaluation protocol to compute the binned descriptors for the given
keypoints in the source image, and find their nearest-neighbors in the target
image. We compare to NBBJ[1] (VGG19-based) and CATs [7] (ResNet101-based).
Table 4 shows that our method outperforms NBB by a large margin, and closes
the gap towards the supervised CATs [7].

Ablations. We ablate our method using on different facets and layers, with and
without binning. Table 4 empirically corroborates our observation of keys being a
better than other facets, and that features from earlier layers are more sensitive
to their position in the image. The correspondence task benefits from these
intermediate features more than plainly using the deepest features (Sec. 3.1).
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Fig. 10. Correspondences Comparison to NBB [1]: On intra-class (top-row) and inter-
class (bottom-row) scenarios. Our method is more robust to appearance, pose and scale
variations. Full size results are available in the SM.

Layer 9 Layer 11
key |query|value|token| key |query|value|token
with bins  |56.48|54.96|52.33|56.03 [53.45|52.35 [49.37|50.34
without bins|52.27|49.35|43.97|50.14 {47.08|42.64 [41.56|46.09
Table 4. Correspondence Fvaluation on Spair71k: We randomly sample 20 image pairs
per category, and report the mean PCK across all categories (a = 0.1); higher is better.
We include a recent supervised method [7] for reference.

Method

NBB [1]|Supervised [7]

26.98 61.43

6 Conclusion

We provided new empirical observations on the internal features learned by
ViTs under different supervisions, and harnessed them for several real-world vi-
sion tasks. We demonstrated the power of these observations by applying only
lightweight zero-shot methodologies to these features, and still achieving com-
petitive results to state-of-the-art supervised methods. We also presented new
capabilities of part co-segmentation across classes, and on domains that lack
available training sets. We believe that our results hold great promise for con-
sidering deep ViT features as an alternative to deep CNN features.
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