
Deep ViT Features as Dense Visual Descriptors

In this document we provide additional implementation details, and complementary results to those
appearing in the paper.

1 Implementation details

In all our experiments (unless specified otherwise) we use dino vits8 model from the official DINO Github
repository [1, 2], with stride=4 (see Resolution Increase paragraph). We use timm repository [17] for ViT
architecture and supervised weights, and [1] for DINO-ViT weights.

PCA (Fig. 2 Right). We used (a) dino vits16 and vit small patch16 224 models with stride=8 and
(b) ResNet-50 trained in a supervised manner and with DINO. All models were trained on ImageNet. We
visualize ViT features from layers 2, 5, 8, 10 and ResNet activations from the end of each block. We resized
the input images to size 224× 224.

t-SNE (Fig. 3). We used dino vits8 and vit small patch16 224 for DINO-ViT and Supervised ViT
respectively, both with stride=8. We use the implementation of opentsne [13], using cosine similarity to
compute affinities between descriptors. For Supervised ViT t-sne we use perplexity 500 and exaggeration 2,
for DINO-ViT we use perplexity 300. To keep the visualization from being too crowded, we show every 10th

descriptor from each image.

Resolution Increase (§4). We increase the resolution of ViT features maps by altering the phase of
patch preparation. Instead of taking non-overlapping patches we take overlapping patches. In practice, the
separation to patches and linear embedding is done by passing the image through a single convolution layer,
with stride that equals the patch size and number of out channels as the embedding dimension. We alter
the stride of this convolution layer to achieve overlapping patches. For example, using stride=8 for a ViT
trained with patch size 16 will increase the ViT feature’s resolution times two. We assume the input size
{Hin,Win} is divided by the patch size without remainder. If that is not the case, we remove the remainder
pixels from the image. The output size is given by:

Hout =
Hin − patch size

stride
+ 1

Wout =
Win − patch size

stride
+ 1

1.1 Part Co-segmentation

Part Co-segmentation parameters (§5.1). We extracted the keys from the last layer (11th starting from
0) and concatenated all the heads to receive a descriptor for each patch. We used the FAISS library [9, 10] for
computing k-means. For the first stage (co-segmentation) our elbow coefficient is 0.975, saliency threshold
is 0.065, majority percentage is 75%. We sampled every 100th descriptor before applying k-means. For
CelebA [12] evaluation (see Sec. 2) we choose the salient segments based if there average distance from the
image center is under 0.2, and if their compactness is above 0.5.
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Part Co-Segmentation of Image Pairs (Fig. 6). We present our part co-segmentation results in an
extreme setting – operating on two images under significant variations of quantity, background clutter, pose,
scale and appearance. Some of our sets belong to domains where training data is scarce. We compensate
for the low number of images by applying flip and random-crop augmentations to the input images before
applying the part co-segmentation pipeline. The random crops are of size 95% of the original images.

For images including much background clutter, we also introduce three clustering stages instead of two –
one for fg/bg separation, one for removing uncommon foreground objects and one for part segmentation.
This extreme setting is sensitive to hyper-parameters, but we found using the same hyperparameters as the
original part co-segmentation pipeline, using 40 random-crop augmentations, and elbow coefficient of 0.94
for the second clustering stage works well for most cases.

1.2 Co-segmentation

Co-segmentation parameters (§5.2). We use the same parameters as stated in the first stage of part
co-segmentation (see Sec. 1.1).

Global Outlier Filtering One of the challenges in the Internet300 [14] dataset is handling images that
do not contain the common object at all. We term these global outlier images, and filter them automatically
before applying the co-segmentation pipeline using the descriptor of the [CLS] token. We compute the
average of all the [CLS] descriptors on the entire set of images, and reject images that have cosine similarity
lower than 0.7 from the average descriptor.

Saliency Baselines (Tab. 3). For DINO-ViT baseline, we used keys from the 11th layer and a saliency
threshold of 0.04. For supervised ViT baseline, we used keys from the 9th layer because they exhibited better
part separation than the 11th layer, giving supervised ViT a fair chance. We used vit small patch16 224

with stride=4 and saliency threshold of 0.01. DINO and supervised ResNet-50 weights are from DINO
and timm repositories respectively. In PASCAL-Co ablations for ResNet-50 we replace the last three strides
with dilation to receive high resolution feature maps, as if features were computed at stride=4 of the input
resolution. All models are trained on ImageNet data.

1.3 Semantic Correspondences

Additional Implementation Details and parameters (§5.3). Given two images, the task is to find
k correspondences between the images, where k is given by the user. We find Best Buddy Pairs [5] (BPPs)
between binned descriptors from both images as correspondence candidates. We use log-binning with three
heirarchies - 17 bins in total (see Fig. 1). We utilize the same DINO-ViT saliency maps for co-segmentation,
and eliminate BBPs where saliency is below 0.05. Then, we cluster the the pairs into k clusters using
a concatenation of their descriptors. Each cluster outputs its most salient BPP as the final result. For
compatibility with NBB we resize the images to size 224× 224.

2 Additional Results

DAVIS Label Propagation. We empirically show the usefulness of test-time resolution increase by apply-
ing it to one of the applications shown in [1] - using pre-trained DINO features for DAVIS label propagation.
We used a dino vits8 model with stride=4. Table 1 exhibits a significant improvement in results when
using our alteration, and exhibit results even better than dino vitb8. These results further demonstrate
the effectiveness of high-granularity features as local descriptors.

Part Co-segmentation (§5.1) In Tab. 2 we measure landmark regression on a subset of the CelebA [12]
as mentioned in [7], using k = 4 and k = 8 parts. Our results are superior to the other methods, both
supervised and unsupervised. Surprisingly, our lightweight method with supervised ViT features performs
impressively as well. These results strengthen our observations that DINO-ViT features are shared across
semantically common parts.
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Architecture (J&F)m Jm Fm

dino vits16 (stride=16) 61.8 60.2 63.4
dino vitb16 (stride=16) 62.3 60.7 63.9
dino vits8 (stride=8) 69.9 66.6 73.1
dino vitb8 (stride=8) 71.4 67.9 74.9
Ours 72.2 67.9 76.5

Table 1: DAVIS 2017 Video Object Segmentation. Using our inference-time resolution increase
surpasses previous methods, and demonstrates the usability of high-granularity features. The first four
rows present results using the DINO tokens from different backbones (as done in [1]). Our result uses the
dino vits8 backbone with stride=4.

Method k = 4 k = 8
ULD [16, 18] - 40.82
DFF [4] - 31.30
IMM [8] 19.42 8.74
SCOPS [7] (w/o sal.) 46.62 22.11
SCOPS [7] (with sal.) 21.76 15.01
Liu [11] et al. 15.39 12.26
Ours (DINO-ViT) 11.36 10.74
Ours (Sup. ViT) 12.83 12.74

Table 2: Landmark regression on Celeba dataset. Our results with DINO-ViT backbone are superior
to all methods. First three methods [16, 18, 4] are designed specifically for landmark discovery, IMM [8]
specializes on faces.

2.1 Co-segmentation

We ablate our co-segmetation method on all datasets using different ViT backbones trained with DINO (see
Tab. 3). For a fair comparison, for each backbone we take all the attention heads when creating our saliency
map within the co-segmentation pipeline. In addition, we use the same parameters (e.g. stride, saliency
threshold) for all runs. Using the same stride means all backbones have the same spatial granularity. It seems
our method performs quite similarly for the different backbones, while favoring those originally trained with
a smaller patch size (e.g. dino vits8 and dino vitb8). This empirically validates our observations across
DINO-ViT backbones, and shows they are all suitable for extracting deep local features when used with
proper stride.

We also ablate our co-segmentation method using different strides (see Tab. 3). It seems that using our
resolution increasing method by setting stride=4 causes an improvement in performance. Our method also
benefits from using a subset of the attention heads (marked by Ours stride=4) than all the attention heads
(marked by dino vits8).

2.2 Semantic Correspondences

In Tab. 4 we ablate our keypoint matching method with different strides and different backbones. We use
a similar setting to the co-segmentation ablation, in which all different backbones are used with the same
stride=4, hence have the same spatial granularity. Evidently, using a lower stride causes an increase in
performance. When using the same stride for different backbones, the performance is similar. Interestingly,
our lightweight zero-shot method surpasses the supervised baseline CATs [3] in roughly a fourth of the
categories. These results further validate our observations hold across different DINO-ViT backbones when
used with proper stride.
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Method
MSRC
[15]

Internet300
[14]

PASCAL
-VOC [6]

PASCAL
-CO

Jm Pm Jm Pm Jm Pm Jm Pm

dino vits8 (stride=4) 81.6 94.3 75.1 93.0 55.7 85.8 74.2 92.8
dino vits16 (stride=4) 72.3 88.9 49.3 76.1 46.3 79.7 70.1 90.8
dino vitb8 (stride=4) 70.8 86.9 69.5 89.9 56.9 87.9 71.2 91.0
dino vitb16 (stride=4) 69.6 86.5 65.1 89.2 48.1 81.9 71.6 91.6
Ours (stride=8) 83.5 95.0 73.8 92.6 52.7 85.3 71.5 91.7
Ours (stride=4) 86.7 96.5 79.5 94.6 60.7 88.2 79.5 94.7

Table 3: Co-segmentation ablation: We report mean Jaccard index Jm and precision Pm over all sets
in each dataset. Different ViT backbones perform comparably, with a slight favor to those trained with a
small patch size. Using a smaller stride causes an increase in performance.

category NBB CATs Stride 4 Stride 8 dino vits8 dino vits16 dino vitb8 dino vitb16

aeroplane 0.44 0.57 0.69 0.64 0.69 0.66 0.60 0.68

bicycle 0.28 0.48 0.50 0.49 0.50 0.42 0.49 0.41

bird 0.67 0.89 0.82 0.78 0.82 0.82 0.78 0.79

boat 0.12 0.39 0.47 0.43 0.46 0.41 0.40 0.54

bottle 0.17 0.44 0.37 0.33 0.37 0.33 0.36 0.34

bus 0.20 0.63 0.42 0.36 0.42 0.40 0.40 0.43

car 0.28 0.60 0.53 0.52 0.53 0.50 0.51 0.53

cat 0.30 0.65 0.66 0.62 0.66 0.66 0.66 0.69

chair 0.20 0.34 0.45 0.39 0.45 0.41 0.44 0.45

cow 0.29 0.73 0.75 0.63 0.75 0.61 0.66 0.68

dog 0.37 0.65 0.65 0.63 0.65 0.55 0.55 0.61

horse 0.13 0.60 0.46 0.38 0.46 0.47 0.44 0.46

motorbike 0.51 0.80 0.69 0.68 0.69 0.58 0.58 0.61

person 0.14 0.66 0.48 0.38 0.47 0.45 0.50 0.59

pottedplant 0.15 0.48 0.44 0.44 0.43 0.44 0.44 0.49

sheep 0.11 0.70 0.65 0.62 0.64 0.70 0.65 0.57

train 0.23 0.83 0.54 0.45 0.54 0.55 0.61 0.68

tvmonitor 0.26 0.62 0.59 0.55 0.59 0.45 0.54 0.68

all 0.27 0.61 0.56 0.52 0.56 0.53 0.54 0.56

Table 4: Spair71k keypoint matching. We report PCK (α = 0.1) for every category. Our method
benefits from working with a lower stride.
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